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Exact icosahedral symmetry of C60 is viewed as the union of 12 orbits of the

symmetric subgroup of order 6 of the icosahedral group of order 120. Here, this

subgroup is denoted by A2 because it is isomorphic to the Weyl group of the

simple Lie algebra A2. Eight of the A2 orbits are hexagons and four are triangles.

Only two of the hexagons appear as part of the C60 surface shell. The orbits form

a stack of parallel layers centered on the axis of C60 passing through the centers

of two opposite hexagons on the surface of C60. By inserting into the middle of

the stack two A2 orbits of six points each and two A2 orbits of three points each,

one can match the structure of C78. Repeating the insertion, one gets C96;

multiple such insertions generate nanotubes of any desired length. Five different

polytopes with 78 carbon-like vertices are described; only two of them can be

augmented to nanotubes.

1. Introduction

The present paper is an independent continuation of the work

reported by Bodner et al. (2013), where the icosahedral

symmetry of the fullerene C60 was broken to the subgroup H2

of the icosahedral group H3, providing a mechanism for the

generation of larger fullerenes of the form C60þN10. The

subject of our study here is icosahedral symmetry breaking to

the subgroup A2, more precisely to the Weyl group of the

simple Lie algebra A2, which is the finite symmetry group of

order 6 isomorphic to the symmetric group of three elements.

While Bodner et al. (2013) reported the fullerene polytopes

related to C60 were C70, C80, C90 and related nanotubes, in this

paper the fullerenes arising from C60 are C78, C96, C114 and

other related types of nanotubes. In general, the situation here

is more complicated than reported by Bodner et al. (2013), as

there are five different fullerene C78 polytopes. Two of them

are the result of two variants of the symmetry breaking

H3 ! A2, each of them leading to a series of larger fullerenes

and nanotubes (Dresselhaus et al., 1996; Harris, 1999; Fowler

& Manolopoulos, 2007; Cataldo et al., 2011). The remaining

three C78 polytopes have no detectable subgroup symmetry

and no related nanotubes.

The five types of C78 polytopes, C78(I), C78(II), . . ., C78(V)1,

are distinguished by the pairs of the nearest pentagons on

their surface ‘central belt’, i.e. the three rings of hexagons and

pentagons in the middle of the polytope oriented along the �3

direction. While C78(I) and C78(II) can be extended to larger

polytopes and to nanotubes of any desired length by insertion

of a corresponding number of additional rings of nine hexa-

gons into the middle of the structure, the polytopes C78(III),

C78(IV) and C78(V) cannot be extended further in any

systematic way.

In this paper, we continue to pursue the general idea of

symmetry breaking, or symmetry reduction, as is often done in

science (Ramond, 2011) as a mechanism for the generation of

specific large fullerenes existing in nature (Balasubramanian,

1991; Wang et al., 2007; Fowler & Manolopoulos, 2007; Lin et

al., 1999, 2006; Zhang et al., 1993). Large symmetry, say G, is

broken or reduced to the symmetry of one of the subgroups,

say G0 � G. Here the symmetry group G is the icosahedral

group (denoted H3) of order 120, acting in the three-

dimensional real Euclidean space R3.

Here we explore one of the three ‘natural’ avenues of

breaking H3 symmetry. The group H3 is generated by three

reflection operations called here r1, r2 and r3 (for an

elaboration on these reflections see x2.2). There are three ways

of breaking H3 to retain only two of the three reflections as

generating elements for the subgroup G0 � H3. Specifically we

have the following possibilities for G0:

r2; r3 generate G0 ¼ H2jH2j ¼ 10; ð1Þ

r1; r2 generate G0 ¼ A2jA2j ¼ 6; ð2Þ

r1; r3 generate G0 ¼ A1 � A1 jA1 � A1j ¼ 4; ð3Þ

where we have introduced notation for the three types of the

subgroups G0 and show the order jG0j of G0. The three ways of

1 For clarity, we specify here the point groups of the C78 isomers. In the
Schönflies convention, C78(I) and C78(II) are D3h, C78(III) is D3, and C78(IV)
and C78(V) are C2v. These are given in paper by Fowler & Manolopoulos
(2007).
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symmetry breaking we mentioned above do not exhaust all

possible symmetry breakings of H3; however, they appear

more naturally or less arbitrary having no built-in parameters

to fix.

The case (1) was studied by Bodner et al. (2013, 2014),

which led from C60 to the generation of the fullerenes C70, C80,

C90, . . . and to corresponding nanotubes.

The case (2) is the subject of the present paper.

The case (3) was not studied as a symmetry-breaking

problem. It will be considered elsewhere.

If the icosahedral symmetry breaking is guided by the

subgroup A2, the polytope with broken symmetry closest to

C60 is the fullerene C78. It turns out that there are two possible

versions of the symmetry-breaking mechanism, leading to two

different C78 polytopes. Both versions can be extended by

breaking the symmetry an arbitrary number of times, leading

to the generation of nanotubes of any desired length.

However, five different C78 molecules have been identified

theoretically, with the two considered here being among them.

All are near spherical shells with surfaces built by hexagons

and pentagons [see, for example, Table A in the book by

Fowler & Manolopoulos (2007)]. In the cases of the three

additional C78 polytopes, one finds no large subgroup of the

icosahedral group, whose symmetry would be retained during

the symmetry breaking.

In addition to the fullerene C60, defined by its dominant

point !1 þ !2, there are two other polytopes with exact

icosahedral symmetry and 60 vertices. We do not call those

polytopes fullerenes. Their dominant points are !2 þ !3 and

!1 þ !3. The two cases are easily distinguished from the

fullerene C60 by their 2-faces (Champagne et al., 1995). In the

one case these faces are decagons and triangles, while in the

second case the 2-faces are pentagons, squares and triangles,

while the C60 fullerene is built from pentagons and hexagons.

The general method of identification and description of faces

of n-dimensional polytopes was found by Champagne et al.

(1995). For an extensive application of the method see

Szajewska (2014).

It was shown in the paper by Bodner et al. (2013) that there

exists a continuum of different polytopes that display an exact

icosahedral symmetry and have 60 vertices. They are called the

‘twisted fullerenes’. Their shell is formed by 12 regular

pentagons and 20 nonregular hexagons which have three sides

of one length and three sides of another length. It appears that

none of these C60 stereoisomers allow extension to nanotubes.

2. The fullerene C60

The three reflections in mirrors that have a common point at

the origin of the three-dimensional Euclidean space R
3

generate reflection groups in R
3. Relative angles of the

mirrors determine whether the group is finite or not and which

group it is. The angles between the mirrors are specified by the

relative angles of the three normal vectors to the mirrors �1, �2

and �3. Fixing for convenience the length of the three

�-vectors to be the same, then the angles are read from the

Coxeter diagram (see Fig. 1), one has the �-basis of the

icosahedral symmetry in R3. The �-basis f�1; �2; �3g of vector

normals to the reflection mirrors define the icosahedral group.

The �-basis is defined by the matrix C of the scalar products

of the basis vectors,

C ¼
�
Cjk

�
¼ ðh�j; �kiÞ ¼

2 �1 0

�1 2 ��

0 �� 2

0
B@

1
CA;

� ¼ 1
2

�
1þ ð5Þ1=2

�
¼ 2 cos�=5: ð4Þ

2.1. Icosahedral bases in R3

A considerable simplification of the description of the

polytopes with icosahedral symmetry can be achieved when

bases defined by the symmetry group are used, since the bases

are not orthogonal.

Besides the �-basis, we use the !-basis that is reciprocal, or

equivalently, dual to the �-basis. It is defined by the require-

ment

h�j; !ki ¼ �jk; j; k ¼ 1; 2; 3: ð5Þ

It is given by the matrix C�1, inverse to C. Matrix elements of

C�1 are the scalar products of the vectors of the !-basis

(Champagne et al., 1995)

ðC�1
jk Þ ¼ ðh!j; !kiÞ ¼

1

2

 
2þ � 2þ 2� 1þ 2�

2þ 2� 4þ 4� 2þ 4�
1þ 2� 2þ 4� 3þ 3�

!
: ð6Þ

Of practical importance are the relations:

�j ¼
P3

k¼1

Cjk!k; !k ¼
P3

j¼1

C�1
kj �j: ð7Þ

It should be noted that requirement (5) does not imply that �k

and !k are collinear for any k = 1, 2 or 3. Indeed, the vectors

!k are of different length (6). In particular,

!1 ¼
1
2 ð2þ �Þ�1 þ ð1þ �Þ�2 þ

1
2 ð1þ 2�Þ�3;

!2 ¼ ð1þ �Þ�1 þ ð2þ 2�Þ�2 þ ð1þ 2�Þ�3;

!3 ¼
1
2 ð1þ 2�Þ�1 þ ð1þ 2�Þ�2 þ

3
2 ð1þ �Þ�3: ð8Þ

Of interest to us here is the subgroup A2 of H3. It is the

dihedral group of order 6, and it is isomorphic to the

symmetric group of three elements. It is conveniently fixed

inside H3 by choosing �1 and �2 to be its �-basis, i.e. vectors

normal to the refection mirrors of A2. As the dual basis we
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Figure 1
Coxeter diagram of H3. Its nodes are taken to stand for the basis vectors
of the �-basis, numbered from left to right. Connecting lines specify the
angles between basis vectors: a single line without the number means that
the angle is 120�, a line with the number 5 means 144�, and the absence of
a direct connection implies orthogonality of the two basis vectors. It is
also sometimes useful to read the nodes of the diagram as the vectors of
the !-basis, or for the reflections r1; r2; r3 in mirrors orthogonal to vectors
of the �-basis and intersecting at the origin of R3.



choose !1 and !2 because they satisfy requirement (5) for j, k

= 1, 2. Note that by requirement (5), the direction orthogonal

to the plane spanned by !1 and !2 is the direction of �3.

2.2. Icosahedral reflections

A reflection is called icosahedral provided it is a reflection

in one of the three mirrors whose orientation is fixed by the

vector normals �1, �2, �3. We denote by r1, r2 and r3 the

corresponding reflection operations. Any point x 2 R3 is

reflected according to

rkx ¼ x� hx; �ki�k; k ¼ 1; 2; 3; x 2 R3: ð9Þ

In particular, rk�j ¼ �j � h�k; �ji�k and also rk!j ¼ !j � �jk�k.

By explicit calculation one can check the following identities:

r2
1 ¼ r2

2 ¼ r2
3 ¼ 1; ðr1r2Þ

3
¼ 1; ðr1r3Þ

2
¼ 1; ðr2r3Þ

5
¼ 1;

ð10Þ

where 1 stands for an identity operation.

Repeated application of the reflection operations (9) to any

point x generate precisely one orbit of the H3 group. Any

point x cannot belong to two orbits of H3. The number of

distinct points in any orbit is easily found, provided x is given

relative to the !-basis (Champagne et al., 1995). As usual, we

interpret the points of the orbit as vertices of an icosahedral

polytope in R3. The orbit of 60 elements/vertices arises when

x ¼ a!1 þ b!2 with a; b> 0. If in addition, we have a = b, the

polytope is the fullerene C60. If a 6¼ b, one gets the ‘twisted’

polytope of the paper by Bodner et al. (2014), still displaying

exact icosahedral symmetry, but whose edges between hexa-

gons are of different length than the edges separating hexa-

gons and pentagons.

The faces of C60 have been described previously (Cham-

pagne et al., 1995; Bodner et al., 2013, 2014) together with a

method for finding them. There are 60 faces of dimension 0

(vertices), 20 hexagonal faces and 12 pentagonal ones (faces

of dimension 2), and 30 edges between two hexagons and

60 edges separating hexagons and pentagons (faces of

dimension 1).

3. The A2 orbits of vertices of C60

The vertices of C60 are generated by the reflections (9) from

any of its points, although it is practical to identify an orbit by

its unique dominant point, the only orbit point that has non-

negative coordinates in the !-basis. Therefore the 60 points

belong to a single orbit of vertices of the icosahedral group H3.

All 60 vertices of the polytope are listed in the !-basis of H3

by Bodner et al. (2013, 2014). However, when one looks at the

same set of 60 vertices from the perspective of a subgroup of

H3, in the present case the subgroup A2, the vertices decom-

pose into several orbits of A2.

Here the list of 60 vertices of C60 is reproduced from

Bodner et al. (2013, 2014).

The points that are in boxes specify the orbits of the

subgroup A2 of H3. They are distinguished by the signs of their

first and second coordinates. These signs coincide. Therefore,

the points taken with the non-negative signs of the first two

coordinates are the highest (‘dominant’) points on the orbit.

When both coordinates are positive, its A2 orbit has six points.

When one of the coordinates is zero, its orbit consists of three

points. There are eight orbits of six points and four orbits of

three points.

During the transformation of a vector given relative to the

basis f!1; !2; !3g to the basis f!1; !2; �3g, dominant vectors

remain dominant in their orbits, because the transformation

leaves the first two coordinates unchanged.

Suppose ða; b; cÞ is given relative to the basis f!1; !2; !3g. In

order to transform it to the basis f!1; !2; �3g, one proceeds as

follows,

ða; b; cÞ

1 0 1
2þ �

0 1 1þ 2�

0 0 3
2þ

3
2 �

0
B@

1
CA

a

b

c

0
B@

1
CA

¼
�
a; b; að12þ �Þ þ bð1þ 2�Þ þ cð32þ

3
2 �Þ
�

¼
�
a; b; 1

2 ðaþ 2bþ 3cÞ þ � 1
2 ð2aþ 4bþ 3cÞ

�
:

Thus one gets the following specific transformations:

ð1; 1; 0Þ�!ð1; 1; 3
2þ 3�Þ; ð2; �;��Þ�!ð2; �; 3

2þ 2�Þ; . . .

Rewriting the vertices of C60 in the A2 basis, i.e. f!1; !2; �3g,

we have:
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Figure 2
The polytope C60 viewed from the direction parallel to the plane spanned
by !1 and !2. The orbits of A2 appear as horizontal segments (‘stack of
pancakes’).



Ordering the A2 orbits by their �3 coordinate, we find that

the upper half of C60 consisting of the orbits (identified by

their dominant weights)

while in the lower half the dominant weights of the A2 orbits

of C60 have the sign of the third coordinate reversed, and the

first two coordinates interchanged.

3.1. C60 as the stack of A2 pancakes

Looking at C60 along the plane spanned by !1 and !2, the

orbits of A2 are viewed as horizontal segments, while the

vertical direction is that of �3. The structure is particularly

visible in Fig. 2.

4. Symmetry breaking C60 ! A2

Breaking the icosahedral symmetry H3 to that of A2 (dihedral

group of order 6) is the main subject here. It is applied to the

reduction of the icosahedral symmetry H3 of C60 to the 12

orbits of A2. The reduction yields eight hexagonal orbits of A2

and four triangular ones.

There are five different polytopes with 78 C atoms forming

29 hexagons and 12 pentagons on their surfaces. In order to

distinguish the five cases, we use the notation C78(I), C78(II),

. . ., C78(V), and these are shown in Figs. 3, 4, 5 and 6,

respectively.

Breaking of the H3 symmetry to its subgroup A2 amounts to

two operations: (i) insertion of several additional orbits of A2

into the middle of the structure as in Fig. 2, and (ii) appro-

priate displacement of the upper and lower halves of C60 along

the �3-axis vector. The two operations are subject to the

general requirement that the shell of the resulting polytope is

formed as before by regular hexagons and 12 pentagons.

4.1. Polytopes C78(I) and C78(II)

Only the polytopes C78(I) (Fig. 3) and C78(II) (Fig. 4) occur

as a result of the symmetry breaking H3 ! A2. They corre-

spond to two possible variants of insertions of the middle belt

into C60 (see Figs. 3 and 4). The two cases can be distinguished

by looking at the pairs of nearest pentagons. In C78(I) they are

linked by an edge of the polytope, while in C78(II) any two

nearest pentagons are connected by a hexagon.

The middle belts of Figs. 3 and 4 display a mismatch

between the vertices and edges of pentagons and of hexagons.

The mismatch has a contribution from three different factors:

(i) unwrapping the belt to a plane from the rounded C78, (ii)

the angles between edges within pentagons and/or hexagons

can be distorted and (iii) the edges of the polytope may be

bent and not of the same length. Only very precise measure-

ment of real carbon polytopes may reveal how much each of

these three factors contribute to the mismatch.

The central ring of nine hexagons in Figs. 3 and 4 can be

extended to three hexagonal rings, forming C114. Adjacent

rings of six hexagons and three pentagons from both sides of

the hexagon rings would fit the triple ring. Continuing further,

one can build C60þ 18ð2kþ 1Þ by inserting 2kþ 1 hexagonal rings.

At some k such extended polytopes should be considered as

nanotubes.
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Figure 3
The C78(I) polytope together with its middle belt of the three rows of
hexagons and pentagons unwrapped into the plane. Three pairs of
vertically aligned pentagons that are linked by a hexagon–hexagon edge
single out C78(I).

Figure 4
The C78(II) polytope together with its middle belt of the three rows of
hexagons and pentagons unwrapped into the plane. Three pairs of
pentagons linked by one hexagon single out C78(II).



When an even number of hexagonal rings is inserted as the

middle ring, the lower (or upper) part of the original C60

polytope needs to be rotated by the angle 2�=18 in order to

match the lower (upper) part of the original polytope.

Polytope C78(II) and its analogs C96, C114, . . ., and nano-

tubes arise in a similar way as in the case of C78(I). Additional

rings of nine hexagons can be inserted into the middle of

C78(I) and C78(II), see Fig. 7. The greater the number of

hexagonal rings inserted, the longer the resulting nanotube

that is built.

4.2. Polytope C78(III)

The polytope corresponding to C78(III) shown in Fig. 5 is

also a result of symmetry breaking H3 ! A2, but is substan-

tially different to C78(I) and C78(II). In those two cases (Figs. 3

and 4) the middle rings of the belts consist of nine hexagons

aligned by their faces, while in C78(III) (Fig. 5) the middle ring

consists of six pentagons, three hexagons and three edges. In

fact C78(III) does not have a ring of nine hexagons oriented in

any direction. Therefore it is not amenable to the formation of

higher analogs of C78 and to nanotubes.

4.3. Polytopes C78(IV) and C78(V)

The polytopes C78(IV) and C78(V) in Fig. 6 can be viewed as

combinations of C78(I) and C78(III). Indeed, in their middle

belt one finds the formations pentagon–edge–pentagon

oriented vertically, as in C78(I), as well as oriented horizon-

tally, as in C78(III). Neither of the two polytopes can be

augmented to higher analogs or to nanotubes by the insertion

of additional rings of nine hexagons.

5. Concluding remarks

The existence of large carbon molecules such as C60 led to a

search and subsequent discovery of a number of even larger

molecules. Considering just the combinatorial possibilities for

joining regular pentagons and hexagons on a convex surface,

however, leads to a very large number of structures which

could be identified (Schwerdtfeger et al., 2013). If in addition,

though, certain symmetry properties are required to be

respected, the number of possible structures is drastically

reduced, producing particular higher carbon molecules in line

with those observed in nature.

In the first paper of the series of which this work is a part

(Bodner et al., 2013), the mechanisms for production of higher

carbon molecular structures utilizing symmetry reduction to a

maximal subgroup H2 of H3 was studied, namely H3 ! H2. In

the present paper, we examined a second possibility, which is

the symmetry reduction H3 ! A2. This reduction to A2,
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Figure 6
The polytopes C78(IV) and C78(V) and their middle belts of three rows of
hexagons and pentagons unwrapped into the plane. Three pairs of
pentagons that are linked by a hexagon–hexagon edge single out C78(IV),
if two of the pairs are oriented horizontally and one vertically. C78(V) is
singled out if two of the pentagon pairs are oriented vertically and the
third pair is oriented horizontally.

Figure 7
Two carbon structures C96 built from C78(I) and C78(II) by adding a ring
of nine hexagons into the middle.

Figure 5
The polytope C78(III) together with its A2-pancake structure and the
middle belt of hexagons and pentagons unwrapped into the plane. Three
pairs of horizontally aligned pentagons that are linked by a hexagon–
hexagon edge single out C78(III).



however, is not unique as in the reduction to H2, and there is

more than one way to achieve it.

A third possibility for carrying out the symmetry reduction

H3 ! A1 � A1 will be reported elsewhere. This case, like in

the case of H2 symmetry reduction, is unique but is achieved

by different means than the insertion of additional belts of

hexagons into the middle of the C60 surface.
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